as.matrix method for classification results | as.matrix.classres |
as.matrix method for ldecomp object | as.matrix.ldecomp |
as.matrix method for PLS-DA results | as.matrix.plsdares |
as.matrix method for PLS results | as.matrix.plsres |
as.matrix method for regression coefficients class | as.matrix.regcoeffs |
as.matrix method for regression results | as.matrix.regres |
as.matrix method for SIMCAM results | as.matrix.simcamres |
as.matrix method for SIMCA classification results | as.matrix.simcares |
Capitalize text or vector with text values | capitalize |
Raman spectra of carbonhydrates | carbs |
Categorize PCA results | categorize |
Categorize PCA results based on orthogonal and score distances. | categorize.pca |
Categorize data rows based on PLS results and critical limits for total distance. | categorize.pls |
Calculates critical limits for distance values using Chi-square distribution | chisq.crit |
Calculate probabilities for distance values using Chi-square distribution | chisq.prob |
PLS-DA classification | classify.plsda |
SIMCA classification | classify.simca |
Check reference class values and convert it to a factor if necessary | classmodel.processRefValues |
Results of classification | classres |
Calculation of classification performance parameters | classres.getPerformance |
Confidence intervals for regression coefficients | confint.regcoeffs |
Class for MCR-ALS constraint | constraint |
Method for angle constraint | constraintAngle |
Method for closure constraint | constraintClosure |
Method for non-negativity constraint | constraintNonNegativity |
Method for normalization constraint | constraintNorm |
Shows information about all implemented constraints | constraints.list |
Method for unimodality constraint | constraintUnimod |
Generate sequence of indices for cross-validation | crossval |
Define parameters based on 'cv' value | crossval.getParams |
Cross-validation of a regression model | crossval.regmodel |
Cross-validation of a SIMCA model | crossval.simca |
String with description of cross-validation method | crossval.str |
Calculates critical limits for distance values using Data Driven moments approach | dd.crit |
Calculates critical limits for distance values using Data Driven moments approach | ddmoments.param |
Calculates critical limits for distance values using Data Driven robust approach | ddrobust.param |
Create ellipse on the current plot | ellipse |
Applies constraint to a dataset | employ.constraint |
Applies a list with preprocessing methods to a dataset | employ.prep |
Imitation of fprinf() function | fprintf |
Calibration data | getCalibrationData |
Returns matrix with original calibration data | getCalibrationData.pca |
Get calibration data | getCalibrationData.simcam |
Compute confidence ellipse for a set of points | getConfidenceEllipse |
Confusion matrix for classification results | getConfusionMatrix |
Confusion matrix for classification results | getConfusionMatrix.classres |
Compute coordinates of a closed convex hull for data points | getConvexHull |
Create a vector with labels for plot series | getDataLabels |
Shows a list with implemented constraints | getImplementedConstraints |
Shows a list with implemented preprocessing methods | getImplementedPrepMethods |
Create labels as column or row indices | getLabelsAsIndices |
Create labels from data values | getLabelsAsValues |
Get main title | getMainTitle |
Define colors for plot series | getPlotColors |
Get class belonging probability | getProbabilities |
Probabilities for residual distances | getProbabilities.pca |
Probabilities of class belonging for PCA/SIMCA results | getProbabilities.simca |
Identifies pure variables | getPureVariables |
Get regression coefficients | getRegcoeffs |
Regression coefficients for PLS model' | getRegcoeffs.regmodel |
Return list with valid results | getRes |
Get selected components | getSelectedComponents |
Selectivity ratio | getSelectivityRatio |
Selectivity ratio for PLS model | getSelectivityRatio.pls |
Compute explained variance for MCR case | getVariance.mcr |
VIP scores | getVIPScores |
VIP scores for PLS model | getVIPScores.pls |
Calculate critical limits for distance values using Hotelling T2 distribution | hotelling.crit |
Calculate probabilities for distance values and given parameters using Hotelling T2 distribution | hotelling.prob |
show image data as an image | imshow |
Variable selection with interval PLS | ipls |
Runs the backward iPLS algorithm | ipls.backward |
Runs the forward iPLS algorithm | ipls.forward |
Calculate critical limits for distance values using Jackson-Mudholkar approach | jm.crit |
Calculate probabilities for distance values and given parameters using Hotelling T2 distribution | jm.prob |
Class for storing and visualising linear decomposition of dataset (X = TP' + E) | ldecomp |
Compute score and residual distances | ldecomp.getDistances |
Compute coordinates of lines or curves with critical limits | ldecomp.getLimitsCoordinates |
Compute parameters for critical limits based on calibration results | ldecomp.getLimParams |
Compute critical limits for orthogonal distances (Q) | ldecomp.getQLimits |
Compute critical limits for score distances (T2) | ldecomp.getT2Limits |
Compute explained variance | ldecomp.getVariances |
Residuals distance plot for a set of ldecomp objects | ldecomp.plotResiduals |
General class for Multivariate Curve Resolution model | mcr |
Multivariate curve resolution using Alternating Least Squares | mcrals |
Identifies pure variables | mcrals.cal |
Fast combinatorial non-negative least squares | mcrals.fcnnls |
Non-negative least squares | mcrals.nnls |
Ordinary least squares | mcrals.ols |
Multivariate curve resolution based on pure variables | mcrpure |
A wrapper for cbind() method with proper set of attributes | mda.cbind |
Convert data matrix to an image | mda.data2im |
Convert data frame to a matrix | mda.df2mat |
Exclude/hide columns in a dataset | mda.exclcols |
Exclude/hide rows in a dataset | mda.exclrows |
Get data attributes | mda.getattr |
Get indices of excluded rows or columns | mda.getexclind |
Convert image to data matrix | mda.im2data |
Include/unhide the excluded columns | mda.inclcols |
include/unhide the excluded rows | mda.inclrows |
Removes excluded (hidden) rows and colmns from data | mda.purge |
Removes excluded (hidden) colmns from data | mda.purgeCols |
Removes excluded (hidden) rows from data | mda.purgeRows |
A wrapper for rbind() method with proper set of attributes | mda.rbind |
Set data attributes | mda.setattr |
Remove background pixels from image data | mda.setimbg |
Wrapper for show() method | mda.show |
A wrapper for subset() method with proper set of attributed | mda.subset |
A wrapper for t() method with proper set of attributes | mda.t |
Plotting function for a single set of objects | mdaplot |
Check color values | mdaplot.areColors |
Format vector with numeric values | mdaplot.formatValues |
Color values for plot elements | mdaplot.getColors |
Calculate limits for x-axis. | mdaplot.getXAxisLim |
Prepare xticklabels for plot | mdaplot.getXTickLabels |
Prepare xticks for plot | mdaplot.getXTicks |
Calculate limits for y-axis. | mdaplot.getYAxisLim |
Prepare yticklabels for plot | mdaplot.getYTickLabels |
Prepare yticks for plot | mdaplot.getYTicks |
Create axes plane | mdaplot.plotAxes |
Prepare colors based on palette and opacity value | mdaplot.prepareColors |
Plot colorbar | mdaplot.showColorbar |
Plot lines | mdaplot.showLines |
Plotting function for several plot series | mdaplotg |
Create and return vector with legend values | mdaplotg.getLegend |
Compute x-axis limits for mdaplotg | mdaplotg.getXLim |
Compute y-axis limits for mdaplotg | mdaplotg.getYLim |
Prepare data for mdaplotg | mdaplotg.prepareData |
Check mdaplotg parameters and replicate them if necessary | mdaplotg.processParam |
Show legend for mdaplotg | mdaplotg.showLegend |
Create line plot with double y-axis | mdaplotyy |
Package for Multivariate Data Analysis (Chemometrics) | mdatools |
Principal Component Analysis | pca |
PCA model calibration | pca.cal |
Low-dimensional approximation of data matrix X | pca.getB |
Replace missing values in data | pca.mvreplace |
NIPALS based PCA algorithm | pca.nipals |
Runs one of the selected PCA methods | pca.run |
Singular Values Decomposition based PCA algorithm | pca.svd |
Results of PCA decomposition | pcares |
Image data | pellets |
People data | people |
Pseudo-inverse matrix | pinv |
Plot function for classification results | plot.classres |
Overview plot for iPLS results | plot.ipls |
Plot summary for MCR model | plot.mcr |
Model overview plot for PCA | plot.pca |
Plot method for PCA results object | plot.pcares |
Model overview plot for PLS | plot.pls |
Model overview plot for PLS-DA | plot.plsda |
Overview plot for PLS-DA results | plot.plsdares |
Overview plot for PLS results | plot.plsres |
Plot for randomization test results | plot.randtest |
Regression coefficients plot | plot.regcoeffs |
Plot method for regression results | plot.regres |
Model overview plot for SIMCA | plot.simca |
Model overview plot for SIMCAM | plot.simcam |
Model overview plot for SIMCAM results | plot.simcamres |
Show plot series as bars | plotBars |
Biplot | plotBiplot |
PCA biplot | plotBiplot.pca |
Add confidence ellipse for groups of points on scatter plot | plotConfidenceEllipse |
Plot resolved contributions | plotContributions |
Show plot with resolved contributions | plotContributions.mcr |
Add convex hull for groups of points on scatter plot | plotConvexHull |
Cooman's plot | plotCooman |
Cooman's plot for SIMCAM model | plotCooman.simcam |
Cooman's plot for SIMCAM results | plotCooman.simcamres |
Correlation plot | plotCorr |
Correlation plot for randomization test results | plotCorr.randtest |
Variance plot | plotCumVariance |
Cumulative explained variance plot | plotCumVariance.ldecomp |
Show plot with cumulative explained variance | plotCumVariance.mcr |
Cumulative explained variance plot for PCA model | plotCumVariance.pca |
Show plot series as density plot (using hex binning) | plotDensity |
Discrimination power plot | plotDiscriminationPower |
Discrimination power plot for SIMCAM model | plotDiscriminationPower.simcam |
Degrees of freedom plot for both distances | plotDistDoF |
Show plot series as error bars | plotErrorbars |
Shows extreme plot for SIMCA model | plotExtreme |
Extreme plot | plotExtreme.pca |
Statistic histogram | plotHist |
Histogram plot for randomization test results | plotHist.randtest |
Hotelling ellipse | plotHotellingEllipse |
Show plot series as set of lines | plotLines |
Loadings plot | plotLoadings |
Loadings plot for PCA model | plotLoadings.pca |
Misclassification ratio plot | plotMisclassified |
Misclassified ratio plot for classification model | plotMisclassified.classmodel |
Misclassified ratio plot for classification results | plotMisclassified.classres |
Model distance plot | plotModelDistance |
Model distance plot for SIMCAM model | plotModelDistance.simcam |
Modelling power plot | plotModellingPower |
Classification performance plot | plotPerformance |
Performance plot for classification model | plotPerformance.classmodel |
Performance plot for classification results | plotPerformance.classres |
Add confidence ellipse or convex hull for group of points | plotPointsShape |
Predictions plot | plotPredictions |
Predictions plot for classification model | plotPredictions.classmodel |
Prediction plot for classification results | plotPredictions.classres |
Predictions plot for regression model | plotPredictions.regmodel |
Predictions plot for regression results | plotPredictions.regres |
Predictions plot for SIMCAM model | plotPredictions.simcam |
Prediction plot for SIMCAM results | plotPredictions.simcamres |
Plot for class belonging probability | plotProbabilities |
Plot for class belonging probability | plotProbabilities.classres |
Plot purity values | plotPurity |
Purity values plot | plotPurity.mcrpure |
Plot purity spectra | plotPuritySpectra |
Purity spectra plot | plotPuritySpectra.mcrpure |
Degrees of freedom plot for orthogonal distance (Nh) | plotQDoF |
Regression coefficients plot | plotRegcoeffs |
Regression coefficient plot for regression model | plotRegcoeffs.regmodel |
Add regression line for data points | plotRegressionLine |
Residuals plot | plotResiduals |
Residual distance plot | plotResiduals.ldecomp |
Residuals distance plot for PCA model | plotResiduals.pca |
Residuals plot for regression results | plotResiduals.regres |
RMSE plot | plotRMSE |
RMSE development plot | plotRMSE.ipls |
RMSE plot for regression model | plotRMSE.regmodel |
RMSE plot for regression results | plotRMSE.regres |
Plot for ratio RMSEC/RMSECV vs RMSECV | plotRMSERatio |
RMSECV/RMSEC ratio plot for regression model | plotRMSERatio.regmodel |
Show plot series as set of points | plotScatter |
Scores plot | plotScores |
Scores plot | plotScores.ldecomp |
Scores plot for PCA model | plotScores.pca |
Selected intervals plot | plotSelection |
iPLS performance plot | plotSelection.ipls |
Selectivity ratio plot | plotSelectivityRatio |
Selectivity ratio plot for PLS model | plotSelectivityRatio.pls |
Sensitivity plot | plotSensitivity |
Sensitivity plot for classification model | plotSensitivity.classmodel |
Sensitivity plot for classification results | plotSensitivity.classres |
Create plot series object based on data, plot type and parameters | plotseries |
Specificity plot | plotSpecificity |
Specificity plot for classification model | plotSpecificity.classmodel |
Specificity plot for classification results | plotSpecificity.classres |
Plot resolved spectra | plotSpectra |
Show plot with resolved spectra | plotSpectra.mcr |
Degrees of freedom plot for score distance (Nh) | plotT2DoF |
Variance plot | plotVariance |
Explained variance plot | plotVariance.ldecomp |
Show plot with explained variance | plotVariance.mcr |
Explained variance plot for PCA model | plotVariance.pca |
Variance plot for PLS | plotVariance.pls |
Explained X variance plot for PLS results | plotVariance.plsres |
VIP scores plot | plotVIPScores |
VIP scores plot for PLS model | plotVIPScores.pls |
Plot for PLS weights | plotWeights |
X loadings plot for PLS | plotWeights.pls |
X cumulative variance plot | plotXCumVariance |
Cumulative explained X variance plot for PLS | plotXCumVariance.pls |
Explained cumulative X variance plot for PLS results | plotXCumVariance.plsres |
X loadings plot | plotXLoadings |
X loadings plot for PLS | plotXLoadings.pls |
X residuals plot | plotXResiduals |
Residual distance plot for decomposition of X data | plotXResiduals.pls |
X residuals plot for PLS results | plotXResiduals.plsres |
X scores plot | plotXScores |
X scores plot for PLS | plotXScores.pls |
X scores plot for PLS results | plotXScores.plsres |
X variance plot | plotXVariance |
Explained X variance plot for PLS | plotXVariance.pls |
Explained X variance plot for PLS results | plotXVariance.plsres |
X loadings plot | plotXYLoadings |
XY loadings plot for PLS | plotXYLoadings.pls |
Plot for XY-residuals | plotXYResiduals |
Residual XY-distance plot | plotXYResiduals.pls |
Residual distance plot | plotXYResiduals.plsres |
XY scores plot | plotXYScores |
XY scores plot for PLS | plotXYScores.pls |
XY scores plot for PLS results | plotXYScores.plsres |
Y cumulative variance plot | plotYCumVariance |
Cumulative explained Y variance plot for PLS | plotYCumVariance.pls |
Explained cumulative Y variance plot for PLS results | plotYCumVariance.plsres |
Y residuals plot | plotYResiduals |
Y residuals plot for PLS results | plotYResiduals.plsres |
Y residuals plot for regression model | plotYResiduals.regmodel |
Y variance plot | plotYVariance |
Explained Y variance plot for PLS | plotYVariance.pls |
Explained Y variance plot for PLS results | plotYVariance.plsres |
Partial Least Squares regression | pls |
PLS model calibration | pls.cal |
Compute coordinates of lines or curves with critical limits | pls.getLimitsCoordinates |
Compute predictions for response values | pls.getpredictions |
Compute object with decomposition of x-values | pls.getxdecomp |
Compute matrix with X-scores | pls.getxscores |
Compute object with decomposition of y-values | pls.getydecomp |
Compute and orthogonalize matrix with Y-scores | pls.getyscores |
Compute critical limits for orthogonal distances (Q) | pls.getZLimits |
Runs selected PLS algorithm | pls.run |
SIMPLS algorithm | pls.simpls |
SIMPLS algorithm (old implementation) | pls.simplsold |
Partial Least Squares Discriminant Analysis | plsda |
PLS-DA results | plsdares |
PLS results | plsres |
MCR ALS predictions | predict.mcrals |
MCR predictions | predict.mcrpure |
PCA predictions | predict.pca |
PLS predictions | predict.pls |
PLS-DA predictions | predict.plsda |
SIMCA predictions | predict.simca |
SIMCA multiple classes predictions | predict.simcam |
Class for preprocessing object | prep |
Baseline correction using asymetric least squares | prep.alsbasecorr |
Autoscale values | prep.autoscale |
Generic function for preprocessing | prep.generic |
Shows information about all implemented preprocessing methods. | prep.list |
Multiplicative Scatter Correction transformation | prep.msc |
Normalization | prep.norm |
Kubelka-Munk transformation | prep.ref2km |
Savytzky-Golay filter | prep.savgol |
Standard Normal Variate transformation | prep.snv |
Transformation | prep.transform |
Variable selection | prep.varsel |
Take dataset and prepare them for plot | preparePlotData |
Prepares calibration data | prepCalData |
Print information about classification result object | print.classres |
Print method for iPLS | print.ipls |
Print method for linear decomposition | print.ldecomp |
Print method for mcrpure object | print.mcrals |
Print method for mcrpure object | print.mcrpure |
Print method for PCA model object | print.pca |
Print method for PCA results object | print.pcares |
Print method for PLS model object | print.pls |
Print method for PLS-DA model object | print.plsda |
Print method for PLS-DA results object | print.plsdares |
print method for PLS results object | print.plsres |
Print method for randtest object | print.randtest |
print method for regression coefficients class | print.regcoeffs |
Print method for PLS model object | print.regmodel |
print method for regression results object | print.regres |
Print method for SIMCA model object | print.simca |
Print method for SIMCAM model object | print.simcam |
Print method for SIMCAM results object | print.simcamres |
Print method for SIMCA results object | print.simcares |
Randomization test for PLS regression | randtest |
Regression coefficients | regcoeffs |
Distribution statistics for regression coeffificents | regcoeffs.getStats |
Regression results | regres |
Prediction bias | regres.bias |
Error of prediction | regres.err |
Determination coefficient | regres.r2 |
RMSE | regres.rmse |
Slope | regres.slope |
Add names and attributes to matrix with statistics | regress.addattrs |
Replicate matric x | repmat |
Select optimal number of components for a model | selectCompNum |
Select optimal number of components for PCA model | selectCompNum.pca |
Select optimal number of components for PLS model | selectCompNum.pls |
Selectivity ratio calculation | selratio |
Set residual distance limits | setDistanceLimits |
Compute and set statistical limits for Q and T2 residual distances. | setDistanceLimits.pca |
Compute and set statistical limits for residual distances. | setDistanceLimits.pls |
Show residual distance limits | showDistanceLimits |
Show labels on plot | showLabels |
Predictions | showPredictions |
Show predicted class values | showPredictions.classres |
SIMCA one-class classification | simca |
SIMCA multiclass classification | simcam |
Performance statistics for SIMCAM model | simcam.getPerformanceStats |
Results of SIMCA multiclass classification | simcamres |
Results of SIMCA one-class classification | simcares |
Spectral data of polyaromatic hydrocarbons mixing | simdata |
Split the excluded part of data | splitExcludedData |
Split dataset to x and y values depending on plot type | splitPlotData |
Summary statistics about classification result object | summary.classres |
Summary for iPLS results | summary.ipls |
Summary statistics for linear decomposition | summary.ldecomp |
Summary method for mcrals object | summary.mcrals |
Summary method for mcrpure object | summary.mcrpure |
Summary method for PCA model object | summary.pca |
Summary method for PCA results object | summary.pcares |
Summary method for PLS model object | summary.pls |
Summary method for PLS-DA model object | summary.plsda |
Summary method for PLS-DA results object | summary.plsdares |
summary method for PLS results object | summary.plsres |
Summary method for randtest object | summary.randtest |
Summary method for regcoeffs object | summary.regcoeffs |
Summary method for regression model object | summary.regmodel |
summary method for regression results object | summary.regres |
Summary method for SIMCA model object | summary.simca |
Summary method for SIMCAM model object | summary.simcam |
Summary method for SIMCAM results object | summary.simcamres |
Summary method for SIMCA results object | summary.simcares |
Unmix spectral data using pure variables estimated before | unmix.mcrpure |
VIP scores for PLS model | vipscores |